
March 1998 The Delphi Magazine 53

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Delphi 3 Display Glitch

QI have just bought a new PC
and have installed my Delphi

3.01 on it. It all functions okay, but
the Component Palette is dis-
played wrongly. There seems to be
some internal image maintenance
problem, which is hard to describe
but garbles up all the component
palette bitmaps. I have sent you a
screen dump to clarify what I
mean. How can I fix this?

AThe screen dump is shown
in Figure 1, you can see how

bad things are by noting that the
mouse is over the TEdit compo-
nent type which is being displayed
as a combination of half a TString-
Grid and half a TPOP component. I
have seen this problem elsewhere
and sometimes the Component
Palette images get so scrambled
that it looks like a television that
has not been tuned. It appears that
the problem stems from which ver-
sion of the common control library
(file COMCTL32.DLL) you have
installed.

Delphi 3’s README says you need
at least version 4.70 of this library
for some of the properties of some
components on the Win32 page of
the component palette to function
and for TToolBar and TCoolBar to
work at all. This is because the
underlying Windows control set
was improved and extended in that
version of the DLL.

Apparently, Delphi 3 was tested
and developed with an even later
version of the control library (4.71)
and due to certain internal DLL dif-
ferences, it seems that the image
list support goes a bit doo-lally on
some video drivers. To remedy the
situation, you will need a later ver-
sion of the DLL. You can get this by
installing a very recent version of

➤ Figure 1
Internet Explorer. This certainly
solved the problem on my
machine.

To check which version you
have installed, use Windows
Explorer to navigate into your Win-
dows\System or WinNT\System32
directory, then locate and select
COMCTL32.DLL. Next, either right-
click on it and choose Properties,
hold Alt down while double-
clicking it, or press Alt-Enter. The
second page of the resultant dialog
has version information on it. The
File Version should be reading at
least 4.71.

Troublesome RichEdits

QHow do I copy the contents
of one TRichEdit component

to another? I have tried copying
the Text property across, and also
the Lines property, but this loses
all the rich-text formatting, regard-
less of the value of the PlainText
property.

AYou can easily do this using
the clipboard, using the

CopyToClipboard and PasteFrom-
Clipboard methods, but this erases
anything already stored in the clip-
board by the user. You could also

save to a temporary file to write to
and read back from. Listing 1
shows how to do this using the
Windows APIs that firstly tell you
where the Windows TEMP directory
is and secondly make up a tempo-
rary file name. The straightfor-
ward SaveToFile and LoadFromFile
methods are used before the file is
finally deleted.

The temporary file solution is
fine, but is not particularly effi-
cient. An in-memory solution
would be preferable. Probably the
best way is to write the Lines prop-
erty of one of them out to a stream
(such as a memory stream) and
then read it back in to the other
Lines property.

Even though the Lines property
is declared as type TStrings, it is in
fact an object of a type inherited
from TStrings, tailored to working
with rich edit controls. The
TRichEditStrings object deals with
adding all the formatting charac-
ters into the text string, as nor-
mally the attributes and text are
stored separately.

The RICHEDIT.DPR project on the
disk demonstrates using a tempo-
rary memory stream as a way of

var
PathName, FileName: array[0..Max_Path] of Char;

...
Win32Check(Bool(GetTempPath(SizeOf(PathName), PathName)));
Win32Check(Bool(GetTempFileName(PathName, '~XX', 0, FileName)));
try
reSource.Lines.SaveToFile(FileName);
reDest.Lines.LoadFromFile(FileName)

finally
DeleteFile(FileName)

end

➤ Listing 1

54 The Delphi Magazine Issue 31

copying the content of a rich edit
control. It is shown in Figure 2 after
the Copy button has been pushed
(whose event handler is shown in
Listing 2).

Rounding Inconsistency

QI was taught that when
rounding fractional num-

bers, a *.5 value always rounds up
to the next larger whole number.
Delphi does not seem to agree with
me all the time. Both 2.5 and 1.5
round to 2 when using the Round
function.

AYou describe one approach
to rounding. What you are

seeing is another approach called
Banker’s Rounding. Unlike your
regular rounding where you al-
ways round up, banker’s rounding
rounds to the nearest even
number. This gives a more even
distribution of rounding since, on
average, half the *.5 numbers are

procedure TForm1.btnCopyClick(Sender: TObject);
var
stmStorage: TMemoryStream;

begin
stmStorage := TMemoryStream.Create;
try
reSource.Lines.SaveToStream(stmStorage);
stmStorage.Position := 0;
reDest.Lines.LoadFromStream(stmStorage)

finally
stmStorage.Free

end
end;

➤ Listing 2

➤ Figure 2
rounded up and half are rounded
down. This does not affect num-
bers with fractional parts greater
or less than .5 which are automati-
cally rounded to the closest
number.

As the name suggests, Banker’s
Rounding comes from financial
situations, where monetary values
are often formed by rounding accu-
rate figures down to values with
fewer decimal places. A fractional
digit of 0 needs no rounding. 1, 2, 3
and 4 round downwards; 6, 7, 8 and
9 round upwards. To ensure there
is no overall bias either way the
number 5 rounds either up or
down, towards the nearest even
value.

Unfortunately, the Delphi online
help does not suggest that this is
the case. It gives the declaration
for the Round function, taking a
parameter X of type Extended and
then says, “If X is exactly halfway
between two whole numbers, the
result is the number with the greatest
absolute magnitude” which is not
true.

Incidentally, in the question you
say that Delphi is performing dif-
ferent rounding to what you
expect. However, it is your
numeric coprocessor that is imple-
menting this Banker’s Rounding,
Round is implemented by floating
point coprocessor instructions.
To emphasise this, the project
ROUND.DPR on the disk performs a
rounding operation both by using
the RoundRTL function, and also by
calling the coprocessor directly
with assembler. Listing 3 shows
the two button event handlers that
give identical results.

If you wish to avoid this Banker’s
Rounding and have the Round func-
tion always round upwards, then
you will need to add a very small
value, such as 0.000001, onto the
argument before passing it to
Round.

Icons, Metafiles
And Graphic Fields

QI have a program that stores
pictures read from disk into

a database. This works fine for bit-
map files, but whenever I try to put
an icon or metafile into the data-
base I get an EInvalidGraphic ex-
ception saying Bitmap image is not
valid. Is there an easy fix?

ASince this question and the
Pictures In Databases one

from last month’s Delphi Clinic are
related to exactly the same sort of
thing, I ensured that the IMG-
TEST.DPR project on last month’s
disk could reproduce the problem.
The open dialog component used
in that project allows you to
choose bitmaps or icons or
metafiles.

The problem arises if you try to
load any non-bitmap file into a
graphic field. As was mentioned
previously, Delphi has various
classes inherited from TGraphic
that allow you to work with bit-
maps, metafiles and icons. Delphi 3
added a new class for JPEG files in
the JPEG unit. Other file formats
could be supported if you could
find or write implementations of
appropriate classes.

Incidentally, talking of the JPEG
unit, it is easy to use it at runtime

56 The Delphi Magazine Issue 31

procedure TForm1.Button1Click(Sender: TObject);
var AFloat: Extended;

AnInt: Longint;
begin
AFloat := StrToFloat(
InputBox('Rounding Test', 'Enter a floating point number', '2.5'));

AnInt := Round(AFloat);
Label1.Caption := Format('Round(%f) = %d', [AFloat, AnInt])

end;
procedure TForm1.Button2Click(Sender: TObject);
var AFloat: Extended;

AnInt: Longint;
begin
AFloat := StrToFloat(
InputBox('Rounding Test', 'Enter a floating point number', '2.5'));

asm
{ Push AFloat onto co-processor stack }
FLD AFloat
{ Round float to an integer }
FRNDINT
{ Pop integer into AnInt }
FISTP AnInt
{ Ensure co-pro ops are complete before proceeding }
FWAIT

end;
Label1.Caption := Format('Round(%f) = %d', [AFloat, AnInt])

end;

➤ Listing 3

by adding it into your uses clause,
but you can also enable the
design-time environment to make
use of JPEG images (for example in
TImages). Adding the JPEG unit into
a design-time package can do this.
Simply make a new package (File |
New... | Package) and give it a file
name and location (and maybe a
description). Next, from the pack-
age editor, choose Add, push Browse
and choose Delphi compiled unit
(*.dcu) from the Files of type:
combobox. Now navigate your way
into Delphi’s LIB directory and
choose the JPEG.DCU file. Finally hit
the Package Editor’s Install
button. I have supplied a sample
package source file on the disk
(JPEGENABLER.DPK) to save you the
trouble of doing this. Simply open
it (File | Open…), choose Delphi
package source (*.dpk) from the
Files of type: list, select the file
and hit the Install button.

Now back to the main plot... The
code in Listing 4 uses the LoadFrom-
File method of a TBlobField. Inter-
nally, this does much the same as
the expanded version that was
shown in last month’s Listing 7,
making use of a blob stream to do
the file content storage. It is the
blob stream that starts the chain of
events that ends up giving you the
exception, but the data aware con-
trol (the TDBImage) is what actually
causes the problem. During the
blob stream’s destruction it calls a
field notification method that even-
tually tells any data-aware controls
connected to the field that the
underlying field value has
changed. The TDBImage refreshes
its view of the value by calling its
LoadPicture method, which passes
the field object to the Assign
method of the TPicture object rep-
resented by its Picture property.
Following this, the TBlobField’s
AssignTo method attempts to save
its contents in a TBitmap object
which, if the field has an icon or
metafile in it, will fail. This gives the
exception.

I guess one solution would be
not to use a DBImage, but to use a
normal TImage instead. As you go
from record to record, you could
read the appropriate graphic
field’s contents into a blob stream

procedure TForm1.Button1Click(Sender: TObject);
begin
if OpenDlg.Execute then begin
Table1.Insert;
Table1Graphic.LoadFromFile(OpenDlg.FileName);
Table1Common_Name.Value :=
ExtractFileName(OpenDlg.FileName);

Table1.Post
end

end;

➤ Listing 4

function LoadStreamIntoGraphic(Graphic: TGraphic; Stream: TStream): Boolean;
begin
Result := True;
try
Stream.Position := 0;
Graphic.LoadFromStream(Stream);
{ Often, an icon object will assume it represents the }
{ stock application icon if it has unknown data in it }
if Graphic is TIcon then
if TIcon(Graphic).Handle = LoadIcon(0, IDI_APPLICATION) then begin
Graphic.Assign(nil);
Abort

end
except
Result := False

end
end;
procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
var
BlobStream: TBlobStream;
{$ifndef DelphiLessThan3}
JPEGImg: TJPEGImage;
{$endif}
begin
{ Only execute this code if graphic field was modified or record was changed }
if not Assigned(Field) or (Field = Table1Graphic) then begin
BlobStream := TBlobStream.Create(Table1Graphic, bmRead);
try
if not LoadStreamIntoGraphic(Image1.Picture.Bitmap, BlobStream) then
if not LoadStreamIntoGraphic(Image1.Picture.Metafile, BlobStream) then
if not LoadStreamIntoGraphic(Image1.Picture.Icon, BlobStream) then
{$ifndef DelphiLessThan3}
begin
JPEGImg := TJPEGImage.Create;
try
{ A TPicture does not have a JPEG property, so we have to do without }
Image1.Picture.Graphic := JPEGImg;
LoadStreamIntoGraphic(Image1.Picture.Graphic, BlobStream)

finally
JPEGImg.Free

end
end
{$endif}
finally
BlobStream.Free

end
end

end;

➤ Listing 5

58 The Delphi Magazine Issue 31

and then use the LoadFromStream
method of the TGraphic object in
the TImage.

The IMGTEST2.DPR project imple-
ments this alternative approach.
Listing 4 is still used to get data into
the table, but now a TImage is used
instead of a TDBImage. Listing 5
shows the code found in the data
source’s OnDataChange event han-
dler along with the utility routine it
employs. Assuming the OnData-
Change event was triggered due to
the graphic field being changed, or
the current record being scrolled,
it proceeds with its logic.

Unfortunately, due to a small
wrinkle, the logic was not quite as
plain and simple as I would have
liked. All the images that my sup-
plied code puts into the table can
be read very easily, but those fish
images already present in the table
have a Paradox file format graphic
header in front of them that causes
problems. So in the case of bitmap
images, the logic differs from all
the other types. I’ll come back to
these differences later.

In the general case, a blob
stream is manufactured to extract
the contents of the field and an
attempt is made to load it into a
TBitmap, TMetafile and TIcon in
turn. The three TPictureproperties
used to do this (Bitmap, Metafile
and Icon) are programmed such
that if the underlying graphic
object is not of the appropriate
type, it is disposed of and an object
of the specified type is manufac-
tured.

Finally in this routine, if none of
the available graphic types seem to
recognise the image, then (assum-
ing Delphi 3 or later is being used)
an attempt is made to load the
image into a TJPEGImage object.
Since TPicture objects do not
inherently understand JPEG
images, the code has to take this
into account and set the JPEG
object up manually.

The LoadStreamIntoGraphic rou-
tine is reasonably straightforward.
It ensures the stream pointer is
reset to the start of the stream and
tries to load the image from the
stream into the graphic object. In
addition it deals with a problem
that sometimes arises. When the

function LoadFieldIntoBitmap(Bitmap: TBitmap; Field: TBlobField): Boolean;
begin
Result := True;
try
Bitmap.Assign(Field)

except
Result := False

end
end;
procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
...
if not LoadFieldIntoBitmap(Image1.Picture.Bitmap, Table1Graphic) then begin
BlobStream := TBlobStream.Create(Table1Graphic, bmRead);
try
if not LoadStreamIntoGraphic(Image1.Picture.Metafile, BlobStream) then
if not LoadStreamIntoGraphic(Image1.Picture.Icon, BlobStream) then
...

finally
BlobStream.Free

end
end

end;

➤ Listing 6

➤ Figure 3

TIcon type is told to read an image
from a stream, it sometimes
mistakes a non-icon image for a ref-
erence to Windows’ stock applica-
tion icon (due to the occurrence of
a zero value in the data block that
would normally be the icon
header). Since references to stock
icons are unlikely to be stored in a
database table, if the code sees a
stock icon being used it clears it
immediately.

So that caters for the approach
where you have no Paradox-stored
bitmaps in your table. However,
when working with something like
the BIOLIFE table, problems arise.
Due to the aforementioned Para-
dox graphic header, the current
code fails to load these bitmaps

into the image. So onto the final
project, IMGTEST3.DPR. This one
changes the logic for the bitmap
load attempt. Listing 6 shows the
main differences and Figure 3
shows the program running, dis-
playing a JPEG image from the
table.

One final note. The JPEG code
was compiled using conditional
compilation. Since it was intro-
duced in Delphi 3 and will be pres-
ent in future versions, none of the
predefined symbols seemed ade-
quate to ensure JPEG support was
available where sensible. So the
DelphiLessThan3 symbol used in
Listing 5 is a hand-crafted symbol,
made with the following compiler
directives:

March 1998 The Delphi Magazine 59

January 1998
Surviving Client/Server Erratum
In the January 1998 Surviving Client/Server column dealing with freeform
text indexing, there was a bug in the memo scanning code. If the last
character of the memo was not punctuation or whitespace, then the last
keyword of the memo was lost. The corrected code can be found on this
month's disk in the SURVIVE directory, in the file NEWJAN98.ZIP, (in the
TMemoScanner.Scan method).

Steve Troxell

{$ifdef Ver80} { Delphi 1.0x }
{$define DelphiLessThan3}
{$endif}
{$ifdef Ver90} { Delphi 2.0x }
{$define DelphiLessThan3}
{$endif}
{$ifdef Ver93}
{ C++ Builder 1.0x }
{$define DelphiLessThan3}
{$Endif}

Thunking: Calling
16-Bit Code From 32-Bit
The business of calling 16-bit code
from 32-bit Windows 95 apps
seems to be riddled with problems.
I first wrote about how to do this
using the undocumented QT_Thunk
API in an article in Issue 12 of The
Delphi Magazine (August 1996).
This was followed by an additional,
simplifying, routine in the Tips &
Tricks column of Issue 13, and then
by a bug-fix in Issue 16’s Delphi
Clinic.

Now I have another update. I was
notified by several readers, who
had clearly purchased shiny new
machines more recently than I had,
that my code failed to work on the

newer Windows 95 release, OSR2.
It seems that in Windows 95 OSR2,
the QT_Thunk API was modified
slightly. Because of the way I was
accessing the API, the previously
supplied code failed to work.

Having at last obtained a copy of
OSR2, I have analysed the problem
and amended the source files
appropriately. On the disk accom-
panying this issue are updated ver-
sions of all the files from the
original article, which have been
successfully tested on both ver-
sions of Windows 95 (and also a
pre-release version of Windows
98). The files are in QTTHUNK.ZIP in
the CLINIC directory.

The online version of the article
located at www.itecuk.com/
delmag/thunk95.htm has also
been updated to reflect these
changes (and the source code is
also there now), so you may wish
to check it out, in order to make
sure you aren’t missing anything
important. I think the primary
practical difference is a warning
about using typed constant PChars
in calls to the Call16BitRoutine:
use zero-based arrays of Char
instead to avoid Access Violations.

Thanks are due to Simon Chang,
Diego Barros, Jinglei Duan and
James A Whelan for alerting me to
the problem.

	Delphi 3 Display Glitch
	Troublesome RichEdits
	Rounding Inconsistency
	Icons, Metafiles And Graphic Fields
	Thunking: Calling 16-Bit Code From 32-Bit
	January 1998 Surviving Client/Server Erratum

